[tex]diketahui \\ r 1= 16 \div 2 = 8 \\ r2 = 8 \div 2 = 4 \\ \\ luas \: lingkaran \\ \pi \times r \times r \\ \\ perbandingan \: luas \: lingkaran\\( \pi \times 8 \times 8) \div (\pi \times 4 \times 4) \\ 64 \div 16 \\ 4 \div 1[/tex]
[tex] \large{ \colorbox{lavender}{ \purple{ \boxed{ \green{ \star{ \purple{ \rm{«Penyelesaian \: Soal» : { \green{ \star}}}}}}}}}}[/tex]
[tex] \: [/tex]
[tex]\huge{ \purple{ \mathfrak{♡Pembahasan♡ :}}} [/tex]
[tex] \: [/tex]
- Diketahui :
diameter lingkaran A = 16 cm
jari-jari lingkaran A = [tex]\sf{\frac{d}{2}\frac{16~cm}{2} }[/tex] = 8 cm
Diameter Lingkaran B = 8 cm
Jari-jari Lingkaran B = [tex]\sf{\frac{d}{2} = \frac{8~cm}{2}}[/tex] = 4 cm
[tex] \: [/tex]
- Ditanya :
perbandingan Luas lingkaran =... : ...
[tex] \\ [/tex]
- Jawab :
[tex]\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{c}\rm \underline{ \blue{perbandingan \: luas \: lingkaran : }} \\ \\ \sf{ = a : b = (\pi \times r \times r) :(\pi \times r \times r) } \\ \\ \sf{ = (3.14 \times 8\times 8) : (3.14 \times 4\times 4)} \\ \\ \sf{ = (314 \times 64) :(3.14 \times 16) } \\ \\ \sf{ = {200.69 \: cm}^{2} : {50.24 \: cm}^{2} } \\ \\ \sf{ = ( {200.69 \: cm}^{2} \div {50.24 \: cm)}^{2} : ( {50.24 \: cm}^{2} \div {50.24 \: cm}^{2}) } \\ \\ \underline{ \boxed{ \red{ \sf{ =4 : 1}}}}\end{array}}}\end{gathered} \end{gathered} [/tex]
[tex] \: [/tex]
- Kesimpulan :
perbandingan luas lingkaran adalah : [tex]\underline{\boxed{\red{\rm{4:1}}}}[/tex]
[tex] \: [/tex]
[tex]_____________________________________________________________[/tex]
[tex] \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ [/tex]
=======
[tex]\colorbox{ff0000}{} \colorbox{ff4000}{}\colorbox{ff8000}{}\colorbox{ffc000}{}\colorbox{ffff00}{}\colorbox{c0ff00}{}\colorbox{80ff00}{}\colorbox{40ff00}{}\colorbox{00ff00}{}\colorbox{00ff40}{}\colorbox{00ff80}{}\colorbox{00ffc0}{}\colorbox{00ffff}{}\colorbox{00c0ff}{}\colorbox{0080ff}{}\colorbox{0040ff}{}\colorbox{0000ff}{}\colorbox{4000ff}{}\colorbox{8000ff}{}\colorbox{c000ff}{}\colorbox{ff00ff}{}\colorbox{ff00c0}{}\colorbox{ff00a0}{}\colorbox{ff0080}{}\colorbox{ff0040}{}[/tex]
[tex] \: [/tex]
[tex] \colorbox{black}{ \blue{ \boxed{ \boxed{ \rm{@AvrilKim}}}}}[/tex]
[answer.2.content]